Tverberg theorems over discrete sets of points
This paper discusses Tverberg-type theorems with coordinate constraints (i.e., versions of these theorems where all points lie within a subset \(S \subset \mathbb{R}^d\) and the intersection of convex hulls is required to have a non-empty intersection with \(S\)). We determine the \(m\)-Tverberg num...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper discusses Tverberg-type theorems with coordinate constraints (i.e., versions of these theorems where all points lie within a subset \(S \subset \mathbb{R}^d\) and the intersection of convex hulls is required to have a non-empty intersection with \(S\)). We determine the \(m\)-Tverberg number, when \(m \geq 3\), of any discrete subset \(S\) of \(\mathbb{R}^2\) (a generalization of an unpublished result of J.-P. Doignon). We also present improvements on the upper bounds for the Tverberg numbers of \(\mathbb{Z}^3\) and \(\mathbb{Z}^j \times \mathbb{R}^k\) and an integer version of the well-known positive-fraction selection lemma of J. Pach. |
---|---|
ISSN: | 2331-8422 |