Recombinant human erythropoietin prevents etoposide- and methotrexate-induced toxicity in kidney and liver tissues via the regulation of oxidative damage and genotoxicity in Wistar rats

Etoposide (ETO) and methotrexate (MTX) are two effective chemotherapeutic drugs. However, the clinical use of these drugs is limited by its toxicity in normal tissues, especially in kidney and in liver tissues. Recombinant human erythropoietin (rhEPO), erythropoietin hormone, has also been shown to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human & experimental toxicology 2018-08, Vol.37 (8), p.848-858
Hauptverfasser: Rjiba-Touati, K, Amara, I, Bousabbeh, M, Salem, I Ben, Azzebi, A, Guedri, Y, Achour, A, Bacha, H, Abid, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Etoposide (ETO) and methotrexate (MTX) are two effective chemotherapeutic drugs. However, the clinical use of these drugs is limited by its toxicity in normal tissues, especially in kidney and in liver tissues. Recombinant human erythropoietin (rhEPO), erythropoietin hormone, has also been shown to exert tissue protective effects. The purpose of this study was to explore the protective effect of rhEPO against oxidative stress and genotoxicity induced by ETO and MTX in vivo. Adult male Wistar rats were divided into 10 groups (6 animals each): control group, rhEPO alone group, ETO alone group, MTX alone group and rhEPO + ETO/MTX groups. In rhEPO + ETO/MTX groups, three doses of pretreatment with rhEPO were performed: 1000, 3000 and 6000 IU/kg. Our results showed that rhEPO pretreatment protects liver and kidney tissues against oxidative stress induced by the anticancer drugs. The glycoprotein decreased malondialdehyde (MDA) levels, reduced catalase activity and ameliorated glutathione depletion. Furthermore, we showed that rhEPO administration prevented drug-induced DNA damage accessed by comet test. Altogether, our results suggested a protective role of rhEPO, especially at 3000 IU/kg, against ETO- and MTX-induced oxidative stress and genotoxicity in vivo.
ISSN:0960-3271
1477-0903
DOI:10.1177/0960327117733553