A stochastic telegraph equation from the six-vertex model

A stochastic telegraph equation is defined by adding a random inhomogeneity to the classical (second order linear hyperbolic) telegraph differential equation. The inhomogeneities we consider are proportional to the two-dimensional white noise, and solutions to our equation are two-dimensional random...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-04
Hauptverfasser: Borodin, Alexei, Gorin, Vadim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Borodin, Alexei
Gorin, Vadim
description A stochastic telegraph equation is defined by adding a random inhomogeneity to the classical (second order linear hyperbolic) telegraph differential equation. The inhomogeneities we consider are proportional to the two-dimensional white noise, and solutions to our equation are two-dimensional random Gaussian fields. We show that such fields arise naturally as asymptotic fluctuations of the height function in a certain limit regime of the stochastic six vertex model in a quadrant. The corresponding law of large numbers -- the limit shape of the height function -- is described by the (deterministic) homogeneous telegraph equation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071972860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071972860</sourcerecordid><originalsourceid>FETCH-proquest_journals_20719728603</originalsourceid><addsrcrecordid>eNqNys8KgkAQgPElCJLyHQY6C-ts_jtGFD1Ad1lsTEVd3RnDx69DD9DpO_y-jQrQmDjKT4g7FTJ3WmtMM0wSE6jiDCyuaixLW4FQTy9vpwZoXqy0boTauwGkIeB2jd7khVYY3JP6g9rWtmcKf92r4-36uNyjybt5IZayc4sfv1SizuIiwzzV5r_rA5zjNq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071972860</pqid></control><display><type>article</type><title>A stochastic telegraph equation from the six-vertex model</title><source>Free E- Journals</source><creator>Borodin, Alexei ; Gorin, Vadim</creator><creatorcontrib>Borodin, Alexei ; Gorin, Vadim</creatorcontrib><description>A stochastic telegraph equation is defined by adding a random inhomogeneity to the classical (second order linear hyperbolic) telegraph differential equation. The inhomogeneities we consider are proportional to the two-dimensional white noise, and solutions to our equation are two-dimensional random Gaussian fields. We show that such fields arise naturally as asymptotic fluctuations of the height function in a certain limit regime of the stochastic six vertex model in a quadrant. The corresponding law of large numbers -- the limit shape of the height function -- is described by the (deterministic) homogeneous telegraph equation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Inhomogeneity ; Variations ; White noise</subject><ispartof>arXiv.org, 2019-04</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Borodin, Alexei</creatorcontrib><creatorcontrib>Gorin, Vadim</creatorcontrib><title>A stochastic telegraph equation from the six-vertex model</title><title>arXiv.org</title><description>A stochastic telegraph equation is defined by adding a random inhomogeneity to the classical (second order linear hyperbolic) telegraph differential equation. The inhomogeneities we consider are proportional to the two-dimensional white noise, and solutions to our equation are two-dimensional random Gaussian fields. We show that such fields arise naturally as asymptotic fluctuations of the height function in a certain limit regime of the stochastic six vertex model in a quadrant. The corresponding law of large numbers -- the limit shape of the height function -- is described by the (deterministic) homogeneous telegraph equation.</description><subject>Differential equations</subject><subject>Inhomogeneity</subject><subject>Variations</subject><subject>White noise</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNys8KgkAQgPElCJLyHQY6C-ts_jtGFD1Ad1lsTEVd3RnDx69DD9DpO_y-jQrQmDjKT4g7FTJ3WmtMM0wSE6jiDCyuaixLW4FQTy9vpwZoXqy0boTauwGkIeB2jd7khVYY3JP6g9rWtmcKf92r4-36uNyjybt5IZayc4sfv1SizuIiwzzV5r_rA5zjNq8</recordid><startdate>20190409</startdate><enddate>20190409</enddate><creator>Borodin, Alexei</creator><creator>Gorin, Vadim</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190409</creationdate><title>A stochastic telegraph equation from the six-vertex model</title><author>Borodin, Alexei ; Gorin, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20719728603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Differential equations</topic><topic>Inhomogeneity</topic><topic>Variations</topic><topic>White noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Borodin, Alexei</creatorcontrib><creatorcontrib>Gorin, Vadim</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodin, Alexei</au><au>Gorin, Vadim</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A stochastic telegraph equation from the six-vertex model</atitle><jtitle>arXiv.org</jtitle><date>2019-04-09</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>A stochastic telegraph equation is defined by adding a random inhomogeneity to the classical (second order linear hyperbolic) telegraph differential equation. The inhomogeneities we consider are proportional to the two-dimensional white noise, and solutions to our equation are two-dimensional random Gaussian fields. We show that such fields arise naturally as asymptotic fluctuations of the height function in a certain limit regime of the stochastic six vertex model in a quadrant. The corresponding law of large numbers -- the limit shape of the height function -- is described by the (deterministic) homogeneous telegraph equation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071972860
source Free E- Journals
subjects Differential equations
Inhomogeneity
Variations
White noise
title A stochastic telegraph equation from the six-vertex model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20stochastic%20telegraph%20equation%20from%20the%20six-vertex%20model&rft.jtitle=arXiv.org&rft.au=Borodin,%20Alexei&rft.date=2019-04-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071972860%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071972860&rft_id=info:pmid/&rfr_iscdi=true