A stochastic telegraph equation from the six-vertex model

A stochastic telegraph equation is defined by adding a random inhomogeneity to the classical (second order linear hyperbolic) telegraph differential equation. The inhomogeneities we consider are proportional to the two-dimensional white noise, and solutions to our equation are two-dimensional random...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-04
Hauptverfasser: Borodin, Alexei, Gorin, Vadim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A stochastic telegraph equation is defined by adding a random inhomogeneity to the classical (second order linear hyperbolic) telegraph differential equation. The inhomogeneities we consider are proportional to the two-dimensional white noise, and solutions to our equation are two-dimensional random Gaussian fields. We show that such fields arise naturally as asymptotic fluctuations of the height function in a certain limit regime of the stochastic six vertex model in a quadrant. The corresponding law of large numbers -- the limit shape of the height function -- is described by the (deterministic) homogeneous telegraph equation.
ISSN:2331-8422