A Bi-population Particle Swarm Optimizer for Learning Automata based Slow Intelligent System

Particle Swarm Optimization (PSO) is an Evolutionary Algorithm (EA) that utilizes a swarm of particles to solve an optimization problem. Slow Intelligence System (SIS) is a learning framework which slowly learns the solution to a problem performing a series of operations. Moreover, Learning Automata...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-04
Hauptverfasser: Mohammad Hasanzadeh Mofrad, Chang, S K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Particle Swarm Optimization (PSO) is an Evolutionary Algorithm (EA) that utilizes a swarm of particles to solve an optimization problem. Slow Intelligence System (SIS) is a learning framework which slowly learns the solution to a problem performing a series of operations. Moreover, Learning Automata (LA) are minuscule but effective decision making entities which are best suited to act as a controller component. In this paper, we combine two isolate populations of PSO to forge the Adaptive Intelligence Optimizer (AIO) which harnesses the advantages of a bi-population PSO to escape from the local minimum and avoid premature convergence. Furthermore, using the rich framework of SIS and the nifty control theory that LA derived from, we find the perfect matching between SIS and LA where acting slowly is the pillar of both of them. Both SIS and LA need time to converge to the optimal decision where this enables AIO to outperform standard PSO having an incomparable performance on evolutionary optimization benchmark functions.
ISSN:2331-8422