Trajectory Optimization of Robots with Regenerative Drive Systems: Numerical and Experimental Results

We investigate energy-optimal control of robots with ultracapacitor based regenerative drive systems. Based on a previously introduced framework, a fairly generic model is considered for the robot and the drive system. An optimal control problem is formulated to find point-to point trajectories maxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-04
Hauptverfasser: Khalaf, Poya, Richter, Hanz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate energy-optimal control of robots with ultracapacitor based regenerative drive systems. Based on a previously introduced framework, a fairly generic model is considered for the robot and the drive system. An optimal control problem is formulated to find point-to point trajectories maximizing the amount of energy regenerated and stored in the capacitor. The optimization problem, its numerical solution and an experimental evaluation are demonstrated using a PUMA 560 manipulator. A comprehensive experimental setup was prepared to evaluate power flows and energy regeneration. Tracking of optimal trajectories was enforced on the robot using a standard robust passivity based control approach. Experimental results show that when following optimal trajectories, a reduction of about 13\% in energy consumption can be achieved for the conditions of the study.
ISSN:2331-8422