Shimura varieties at level \(\Gamma_1(p^\infty)\) and Galois representations
We show that the compactly supported cohomology of certain \(\mathrm{U}(n,n)\) or \(\mathrm{Sp}(2n)\)-Shimura varieties with \(\Gamma_1(p^\infty)\)-level vanishes above the middle degree. The only assumption is that we work over a CM field \(F\) in which the prime \(p\) splits completely. We also gi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-07 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the compactly supported cohomology of certain \(\mathrm{U}(n,n)\) or \(\mathrm{Sp}(2n)\)-Shimura varieties with \(\Gamma_1(p^\infty)\)-level vanishes above the middle degree. The only assumption is that we work over a CM field \(F\) in which the prime \(p\) splits completely. We also give an application to Galois representations for torsion in the cohomology of the locally symmetric spaces for \(\mathrm{GL}_n/F\). More precisely, we use the vanishing result for Shimura varieties to eliminate the nilpotent ideal in the construction of these Galois representations. This strengthens recent results of Scholze and Newton-Thorne. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1804.00136 |