Containment Relations among Spherical Subgroups

A closed subgroup \(H\) of a connected reductive group \(G\) is called \(\textit{spherical}\) if a Borel subgroup in \(G\) has an open orbit on \(G/H\). We give a combinatorial characterization for a spherical subgroup to be contained in another one which generalizes previous work by Knop. As an app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-04
1. Verfasser: Hofscheier, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A closed subgroup \(H\) of a connected reductive group \(G\) is called \(\textit{spherical}\) if a Borel subgroup in \(G\) has an open orbit on \(G/H\). We give a combinatorial characterization for a spherical subgroup to be contained in another one which generalizes previous work by Knop. As an application, we compute the Luna datum of the identity component of a spherical subgroup which yields a characterization of connectedness for spherical subgroups.
ISSN:2331-8422