Universal deformation rings and self-injective Nakayama algebras
Let \(k\) be a field and let \(\Lambda\) be an indecomposable finite dimensional \(k\)-algebra such that there is a stable equivalence of Morita type between \(\Lambda\) and a self-injective split basic Nakayama algebra over \(k\). We show that every indecomposable finitely generated \(\Lambda\)-mod...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(k\) be a field and let \(\Lambda\) be an indecomposable finite dimensional \(k\)-algebra such that there is a stable equivalence of Morita type between \(\Lambda\) and a self-injective split basic Nakayama algebra over \(k\). We show that every indecomposable finitely generated \(\Lambda\)-module \(V\) has a universal deformation ring \(R(\Lambda,V)\) and we describe \(R(\Lambda,V)\) explicitly as a quotient ring of a power series ring over \(k\) in finitely many variables. This result applies in particular to Brauer tree algebras, and hence to \(p\)-modular blocks of finite groups with cyclic defect groups. |
---|---|
ISSN: | 2331-8422 |