Leveraging Intel SGX to Create a Nondisclosure Cryptographic library

Enforcing integrity and confidentiality of users' application code and data is a challenging mission that any software developer working on an online production grade service is facing. Since cryptology is not a widely understood subject, people on the cutting edge of research and industry are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-04
Hauptverfasser: Mohammad Hasanzadeh Mofrad, Lee, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enforcing integrity and confidentiality of users' application code and data is a challenging mission that any software developer working on an online production grade service is facing. Since cryptology is not a widely understood subject, people on the cutting edge of research and industry are always seeking for new technologies to naturally expand the security of their programs and systems. Intel Software Guard Extension (Intel SGX) is an Intel technology for developers who are looking to protect their software binaries from plausible attacks using hardware instructions. The Intel SGX puts sensitive code and data into CPU-hardened protected regions called enclaves. In this project we leverage the Intel SGX to produce a secure cryptographic library which keeps the generated keys inside an enclave restricting use and dissemination of confidential cryptographic keys. Using enclaves to store the keys we maintain a small Trusted Computing Base (TCB) where we also perform computation on temporary buffers to and from untrusted application code. As a proof of concept, we implemented hashes and symmetric encryption algorithms inside the enclave where we stored hashes, Initialization Vectors (IVs) and random keys and open sourced the code (https://github.com/hmofrad/CryptoEnclave).
ISSN:2331-8422