An inverse boundary value problem for the \(p\)-Laplacian
This work tackles an inverse boundary value problem for a \(p\)-Laplace type partial differential equation parametrized by a smoothening parameter \(\tau \geq 0\). The aim is to numerically test reconstructing a conductivity type coefficient in the equation when Dirichlet boundary values of certain...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work tackles an inverse boundary value problem for a \(p\)-Laplace type partial differential equation parametrized by a smoothening parameter \(\tau \geq 0\). The aim is to numerically test reconstructing a conductivity type coefficient in the equation when Dirichlet boundary values of certain solutions to the corresponding Neumann problem serve as data. The numerical studies are based on a straightforward linearization of the forward map, and they demonstrate that the accuracy of such an approach depends nontrivially on \(1 < p < \infty\) and the chosen parametrization for the unknown coefficient. The numerical considerations are complemented by proving that the forward operator, which maps a H\"older continuous conductivity coefficient to the solution of the Neumann problem, is Fréchet differentiable, excluding the degenerate case \(\tau=0\) that corresponds to the classical (weighted) \(p\)-Laplace equation. |
---|---|
ISSN: | 2331-8422 |