On Fourier integral operators with Hölder-continuous phase

We study continuity properties in Lebesgue spaces for a class of Fourier integral operators arising in the study of the Boltzmann equation. The phase has a H\"older-type singularity at the origin. We prove boundedness in \(L^1\) with a precise loss of decay depending on the H\"older expone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-11
Hauptverfasser: Cordero, Elena, Nicola, Fabio, Primo, Eva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study continuity properties in Lebesgue spaces for a class of Fourier integral operators arising in the study of the Boltzmann equation. The phase has a H\"older-type singularity at the origin. We prove boundedness in \(L^1\) with a precise loss of decay depending on the H\"older exponent, and we show by counterexamples that a loss occurs even in the case of smooth phases. The results can be seen as a quantitative version of the Beurling-Helson theorem for changes of variables with a H\"older singularity at the origin. The continuity in \(L^2\) is studied as well by providing sufficient conditions and relevant counterexamples. The proofs rely on techniques from Time-frequency Analysis.
ISSN:2331-8422
DOI:10.48550/arxiv.1711.05215