On two Algorithmic Problems about Synchronizing Automata
Under the assumption \(\mathcal{P} \neq \mathcal{NP}\), we prove that two natural problems from the theory of synchronizing automata cannot be solved in polynomial time. The first problem is to decide whether a given reachable partial automaton is synchronizing. The second one is, given an \(n\)-sta...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-03 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Under the assumption \(\mathcal{P} \neq \mathcal{NP}\), we prove that two natural problems from the theory of synchronizing automata cannot be solved in polynomial time. The first problem is to decide whether a given reachable partial automaton is synchronizing. The second one is, given an \(n\)-state binary complete synchronizing automaton, to compute its reset threshold within performance ratio less than \(d \ln{(n)}\) for a specific constant \(d>0\). |
---|---|
ISSN: | 2331-8422 |