Minimal space with non-minimal square

We completely solve the problem whether the product of two compact metric spaces admitting minimal maps also admits a minimal map. Recently Boroński, Clark and Oprocha gave a negative answer in the particular case when homeomorphisms rather than continuous maps are considered. In the present paper w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-05
Hauptverfasser: Snoha, Ľubomír, Špitalský, Vladimír
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Snoha, Ľubomír
Špitalský, Vladimír
description We completely solve the problem whether the product of two compact metric spaces admitting minimal maps also admits a minimal map. Recently Boroński, Clark and Oprocha gave a negative answer in the particular case when homeomorphisms rather than continuous maps are considered. In the present paper we show that there is a metric continuum \(X\) admitting a minimal map, in fact a minimal homeomorphism, such that \(X\times X\) does not admit any minimal map.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071825701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071825701</sourcerecordid><originalsourceid>FETCH-proquest_journals_20718257013</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9c3My8xNzFEoLkhMTlUozyzJUMjLz9PNhQkXliYWpfIwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgbmhhZGpuYGhMXGqAP41Lus</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071825701</pqid></control><display><type>article</type><title>Minimal space with non-minimal square</title><source>Free E- Journals</source><creator>Snoha, Ľubomír ; Špitalský, Vladimír</creator><creatorcontrib>Snoha, Ľubomír ; Špitalský, Vladimír</creatorcontrib><description>We completely solve the problem whether the product of two compact metric spaces admitting minimal maps also admits a minimal map. Recently Boroński, Clark and Oprocha gave a negative answer in the particular case when homeomorphisms rather than continuous maps are considered. In the present paper we show that there is a metric continuum \(X\) admitting a minimal map, in fact a minimal homeomorphism, such that \(X\times X\) does not admit any minimal map.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2020-05</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Snoha, Ľubomír</creatorcontrib><creatorcontrib>Špitalský, Vladimír</creatorcontrib><title>Minimal space with non-minimal square</title><title>arXiv.org</title><description>We completely solve the problem whether the product of two compact metric spaces admitting minimal maps also admits a minimal map. Recently Boroński, Clark and Oprocha gave a negative answer in the particular case when homeomorphisms rather than continuous maps are considered. In the present paper we show that there is a metric continuum \(X\) admitting a minimal map, in fact a minimal homeomorphism, such that \(X\times X\) does not admit any minimal map.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9c3My8xNzFEoLkhMTlUozyzJUMjLz9PNhQkXliYWpfIwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgbmhhZGpuYGhMXGqAP41Lus</recordid><startdate>20200526</startdate><enddate>20200526</enddate><creator>Snoha, Ľubomír</creator><creator>Špitalský, Vladimír</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200526</creationdate><title>Minimal space with non-minimal square</title><author>Snoha, Ľubomír ; Špitalský, Vladimír</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20718257013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Snoha, Ľubomír</creatorcontrib><creatorcontrib>Špitalský, Vladimír</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snoha, Ľubomír</au><au>Špitalský, Vladimír</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Minimal space with non-minimal square</atitle><jtitle>arXiv.org</jtitle><date>2020-05-26</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We completely solve the problem whether the product of two compact metric spaces admitting minimal maps also admits a minimal map. Recently Boroński, Clark and Oprocha gave a negative answer in the particular case when homeomorphisms rather than continuous maps are considered. In the present paper we show that there is a metric continuum \(X\) admitting a minimal map, in fact a minimal homeomorphism, such that \(X\times X\) does not admit any minimal map.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071825701
source Free E- Journals
title Minimal space with non-minimal square
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Minimal%20space%20with%20non-minimal%20square&rft.jtitle=arXiv.org&rft.au=Snoha,%20%C4%BDubom%C3%ADr&rft.date=2020-05-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071825701%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071825701&rft_id=info:pmid/&rfr_iscdi=true