Minimal space with non-minimal square
We completely solve the problem whether the product of two compact metric spaces admitting minimal maps also admits a minimal map. Recently Boroński, Clark and Oprocha gave a negative answer in the particular case when homeomorphisms rather than continuous maps are considered. In the present paper w...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We completely solve the problem whether the product of two compact metric spaces admitting minimal maps also admits a minimal map. Recently Boroński, Clark and Oprocha gave a negative answer in the particular case when homeomorphisms rather than continuous maps are considered. In the present paper we show that there is a metric continuum \(X\) admitting a minimal map, in fact a minimal homeomorphism, such that \(X\times X\) does not admit any minimal map. |
---|---|
ISSN: | 2331-8422 |