Minimal space with non-minimal square

We completely solve the problem whether the product of two compact metric spaces admitting minimal maps also admits a minimal map. Recently Boroński, Clark and Oprocha gave a negative answer in the particular case when homeomorphisms rather than continuous maps are considered. In the present paper w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-05
Hauptverfasser: Snoha, Ľubomír, Špitalský, Vladimír
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We completely solve the problem whether the product of two compact metric spaces admitting minimal maps also admits a minimal map. Recently Boroński, Clark and Oprocha gave a negative answer in the particular case when homeomorphisms rather than continuous maps are considered. In the present paper we show that there is a metric continuum \(X\) admitting a minimal map, in fact a minimal homeomorphism, such that \(X\times X\) does not admit any minimal map.
ISSN:2331-8422