The constant term of tempered functions on a real spherical space

Let \(Z\) be a unimodular real spherical space. We develop a theory of constant terms for tempered functions on \(Z\) which parallels the work of Harish-Chandra. The constant terms \(f_I\) of an eigenfunction \(f\) are parametrized by subsets \(I\) of the set \(S\) of spherical roots which determine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-12
Hauptverfasser: Beuzart-Plessis, Raphaël, Delorme, Patrick, Krötz, Bernhard, Souaifi, Sofiane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(Z\) be a unimodular real spherical space. We develop a theory of constant terms for tempered functions on \(Z\) which parallels the work of Harish-Chandra. The constant terms \(f_I\) of an eigenfunction \(f\) are parametrized by subsets \(I\) of the set \(S\) of spherical roots which determine the fine geometry of \(Z\) at infinity. Constant terms are transitive i.e. \((f_J)_I=f_I\) for \(I\subset J\), and our main result is a quantitative bound of the difference \(f-f_I\), which is uniform in the parameter of the eigenfunction.
ISSN:2331-8422