A Feature-Rich Vietnamese Named-Entity Recognition Model

In this paper, we present a feature-based named-entity recognition (NER) model that achieves the start-of-the-art accuracy for Vietnamese language. We combine word, word-shape features, PoS, chunk, Brown-cluster-based features, and word-embedding-based features in the Conditional Random Fields (CRF)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-03
1. Verfasser: Pham Quang Nhat Minh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a feature-based named-entity recognition (NER) model that achieves the start-of-the-art accuracy for Vietnamese language. We combine word, word-shape features, PoS, chunk, Brown-cluster-based features, and word-embedding-based features in the Conditional Random Fields (CRF) model. We also explore the effects of word segmentation, PoS tagging, and chunking results of many popular Vietnamese NLP toolkits on the accuracy of the proposed feature-based NER model. Up to now, our work is the first work that systematically performs an extrinsic evaluation of basic Vietnamese NLP toolkits on the downstream NER task. Experimental results show that while automatically-generated word segmentation is useful, PoS and chunking information generated by Vietnamese NLP tools does not show their benefits for the proposed feature-based NER model.
ISSN:2331-8422