Some Generalizations of Spivey's Bell Number Formula
In this paper, a generalized recurrence relation for the \(r\)-Whitney numbers of the second kind is derived using as framework the operators \(X\) and \(D\) satisfying the commutation relation \(DX-XD=1\). This recurrence relation is shown to be a generalization of the well-known Spivey's Bell...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a generalized recurrence relation for the \(r\)-Whitney numbers of the second kind is derived using as framework the operators \(X\) and \(D\) satisfying the commutation relation \(DX-XD=1\). This recurrence relation is shown to be a generalization of the well-known Spivey's Bell number. Moreover, several other identities generalizing Spivey's Bell number formula are obtained. |
---|---|
ISSN: | 2331-8422 |