Varieties via their L-functions
We describe a procedure for determining the existence, or non-existence, of an algebraic variety of a given conductor via an analytic calculation involving L-functions. The procedure assumes that the Hasse-Weil L-function of the variety satisfies its conjectured functional equation, but there is no...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a procedure for determining the existence, or non-existence, of an algebraic variety of a given conductor via an analytic calculation involving L-functions. The procedure assumes that the Hasse-Weil L-function of the variety satisfies its conjectured functional equation, but there is no assumption of an associated automorphic object or Galois representation. We demonstrate the method by finding the Hasse-Weil L-functions of all hyperelliptic curves of conductor less than 500. |
---|---|
ISSN: | 2331-8422 |