Satellite imagery analysis for operational damage assessment in Emergency situations

When major disaster occurs the questions are raised how to estimate the damage in time to support the decision making process and relief efforts by local authorities or humanitarian teams. In this paper we consider the use of Machine Learning and Computer Vision on remote sensing imagery to improve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-02
Hauptverfasser: Trekin, Alexey, Novikov, German, Potapov, Georgy, Ignatiev, Vladimir, Burnaev, Evgeny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Trekin, Alexey
Novikov, German
Potapov, Georgy
Ignatiev, Vladimir
Burnaev, Evgeny
description When major disaster occurs the questions are raised how to estimate the damage in time to support the decision making process and relief efforts by local authorities or humanitarian teams. In this paper we consider the use of Machine Learning and Computer Vision on remote sensing imagery to improve time efficiency of assessment of damaged buildings in disaster affected area. We propose a general workflow that can be useful in various disaster management applications, and demonstrate the use of the proposed workflow for the assessment of the damage caused by the wildfires in California in 2017.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071694772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071694772</sourcerecordid><originalsourceid>FETCH-proquest_journals_20716947723</originalsourceid><addsrcrecordid>eNqNzNEKgjAUxvERBEn5Dge6Fuamrq7D6D7vZdRRJnOznXnh22fRA3T1wZ8f34YlQso8OxVC7FhKNHDORaVEWcqENXcd0VoTEcyoewwLaKftQoag8wH8hEFH49cGT_0RoImQaEQXwTioRww9uscCZOL8pXRg205bwvS3e3a81s3llk3Bv2ak2A5-DusltYKrvDoXSgn5n3oDERZBnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071694772</pqid></control><display><type>article</type><title>Satellite imagery analysis for operational damage assessment in Emergency situations</title><source>Free E- Journals</source><creator>Trekin, Alexey ; Novikov, German ; Potapov, Georgy ; Ignatiev, Vladimir ; Burnaev, Evgeny</creator><creatorcontrib>Trekin, Alexey ; Novikov, German ; Potapov, Georgy ; Ignatiev, Vladimir ; Burnaev, Evgeny</creatorcontrib><description>When major disaster occurs the questions are raised how to estimate the damage in time to support the decision making process and relief efforts by local authorities or humanitarian teams. In this paper we consider the use of Machine Learning and Computer Vision on remote sensing imagery to improve time efficiency of assessment of damaged buildings in disaster affected area. We propose a general workflow that can be useful in various disaster management applications, and demonstrate the use of the proposed workflow for the assessment of the damage caused by the wildfires in California in 2017.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer vision ; Damage assessment ; Decision making ; Disaster management ; Emergency procedures ; Forest &amp; brush fires ; Machine learning ; Remote sensing ; Satellite imagery ; Wildfires ; Workflow</subject><ispartof>arXiv.org, 2018-02</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Trekin, Alexey</creatorcontrib><creatorcontrib>Novikov, German</creatorcontrib><creatorcontrib>Potapov, Georgy</creatorcontrib><creatorcontrib>Ignatiev, Vladimir</creatorcontrib><creatorcontrib>Burnaev, Evgeny</creatorcontrib><title>Satellite imagery analysis for operational damage assessment in Emergency situations</title><title>arXiv.org</title><description>When major disaster occurs the questions are raised how to estimate the damage in time to support the decision making process and relief efforts by local authorities or humanitarian teams. In this paper we consider the use of Machine Learning and Computer Vision on remote sensing imagery to improve time efficiency of assessment of damaged buildings in disaster affected area. We propose a general workflow that can be useful in various disaster management applications, and demonstrate the use of the proposed workflow for the assessment of the damage caused by the wildfires in California in 2017.</description><subject>Computer vision</subject><subject>Damage assessment</subject><subject>Decision making</subject><subject>Disaster management</subject><subject>Emergency procedures</subject><subject>Forest &amp; brush fires</subject><subject>Machine learning</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Wildfires</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzNEKgjAUxvERBEn5Dge6Fuamrq7D6D7vZdRRJnOznXnh22fRA3T1wZ8f34YlQso8OxVC7FhKNHDORaVEWcqENXcd0VoTEcyoewwLaKftQoag8wH8hEFH49cGT_0RoImQaEQXwTioRww9uscCZOL8pXRg205bwvS3e3a81s3llk3Bv2ak2A5-DusltYKrvDoXSgn5n3oDERZBnw</recordid><startdate>20180219</startdate><enddate>20180219</enddate><creator>Trekin, Alexey</creator><creator>Novikov, German</creator><creator>Potapov, Georgy</creator><creator>Ignatiev, Vladimir</creator><creator>Burnaev, Evgeny</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180219</creationdate><title>Satellite imagery analysis for operational damage assessment in Emergency situations</title><author>Trekin, Alexey ; Novikov, German ; Potapov, Georgy ; Ignatiev, Vladimir ; Burnaev, Evgeny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20716947723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer vision</topic><topic>Damage assessment</topic><topic>Decision making</topic><topic>Disaster management</topic><topic>Emergency procedures</topic><topic>Forest &amp; brush fires</topic><topic>Machine learning</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Wildfires</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Trekin, Alexey</creatorcontrib><creatorcontrib>Novikov, German</creatorcontrib><creatorcontrib>Potapov, Georgy</creatorcontrib><creatorcontrib>Ignatiev, Vladimir</creatorcontrib><creatorcontrib>Burnaev, Evgeny</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trekin, Alexey</au><au>Novikov, German</au><au>Potapov, Georgy</au><au>Ignatiev, Vladimir</au><au>Burnaev, Evgeny</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Satellite imagery analysis for operational damage assessment in Emergency situations</atitle><jtitle>arXiv.org</jtitle><date>2018-02-19</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>When major disaster occurs the questions are raised how to estimate the damage in time to support the decision making process and relief efforts by local authorities or humanitarian teams. In this paper we consider the use of Machine Learning and Computer Vision on remote sensing imagery to improve time efficiency of assessment of damaged buildings in disaster affected area. We propose a general workflow that can be useful in various disaster management applications, and demonstrate the use of the proposed workflow for the assessment of the damage caused by the wildfires in California in 2017.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071694772
source Free E- Journals
subjects Computer vision
Damage assessment
Decision making
Disaster management
Emergency procedures
Forest & brush fires
Machine learning
Remote sensing
Satellite imagery
Wildfires
Workflow
title Satellite imagery analysis for operational damage assessment in Emergency situations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Satellite%20imagery%20analysis%20for%20operational%20damage%20assessment%20in%20Emergency%20situations&rft.jtitle=arXiv.org&rft.au=Trekin,%20Alexey&rft.date=2018-02-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071694772%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071694772&rft_id=info:pmid/&rfr_iscdi=true