Satellite imagery analysis for operational damage assessment in Emergency situations
When major disaster occurs the questions are raised how to estimate the damage in time to support the decision making process and relief efforts by local authorities or humanitarian teams. In this paper we consider the use of Machine Learning and Computer Vision on remote sensing imagery to improve...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-02 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Trekin, Alexey Novikov, German Potapov, Georgy Ignatiev, Vladimir Burnaev, Evgeny |
description | When major disaster occurs the questions are raised how to estimate the damage in time to support the decision making process and relief efforts by local authorities or humanitarian teams. In this paper we consider the use of Machine Learning and Computer Vision on remote sensing imagery to improve time efficiency of assessment of damaged buildings in disaster affected area. We propose a general workflow that can be useful in various disaster management applications, and demonstrate the use of the proposed workflow for the assessment of the damage caused by the wildfires in California in 2017. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071694772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071694772</sourcerecordid><originalsourceid>FETCH-proquest_journals_20716947723</originalsourceid><addsrcrecordid>eNqNzNEKgjAUxvERBEn5Dge6Fuamrq7D6D7vZdRRJnOznXnh22fRA3T1wZ8f34YlQso8OxVC7FhKNHDORaVEWcqENXcd0VoTEcyoewwLaKftQoag8wH8hEFH49cGT_0RoImQaEQXwTioRww9uscCZOL8pXRg205bwvS3e3a81s3llk3Bv2ak2A5-DusltYKrvDoXSgn5n3oDERZBnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071694772</pqid></control><display><type>article</type><title>Satellite imagery analysis for operational damage assessment in Emergency situations</title><source>Free E- Journals</source><creator>Trekin, Alexey ; Novikov, German ; Potapov, Georgy ; Ignatiev, Vladimir ; Burnaev, Evgeny</creator><creatorcontrib>Trekin, Alexey ; Novikov, German ; Potapov, Georgy ; Ignatiev, Vladimir ; Burnaev, Evgeny</creatorcontrib><description>When major disaster occurs the questions are raised how to estimate the damage in time to support the decision making process and relief efforts by local authorities or humanitarian teams. In this paper we consider the use of Machine Learning and Computer Vision on remote sensing imagery to improve time efficiency of assessment of damaged buildings in disaster affected area. We propose a general workflow that can be useful in various disaster management applications, and demonstrate the use of the proposed workflow for the assessment of the damage caused by the wildfires in California in 2017.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer vision ; Damage assessment ; Decision making ; Disaster management ; Emergency procedures ; Forest & brush fires ; Machine learning ; Remote sensing ; Satellite imagery ; Wildfires ; Workflow</subject><ispartof>arXiv.org, 2018-02</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Trekin, Alexey</creatorcontrib><creatorcontrib>Novikov, German</creatorcontrib><creatorcontrib>Potapov, Georgy</creatorcontrib><creatorcontrib>Ignatiev, Vladimir</creatorcontrib><creatorcontrib>Burnaev, Evgeny</creatorcontrib><title>Satellite imagery analysis for operational damage assessment in Emergency situations</title><title>arXiv.org</title><description>When major disaster occurs the questions are raised how to estimate the damage in time to support the decision making process and relief efforts by local authorities or humanitarian teams. In this paper we consider the use of Machine Learning and Computer Vision on remote sensing imagery to improve time efficiency of assessment of damaged buildings in disaster affected area. We propose a general workflow that can be useful in various disaster management applications, and demonstrate the use of the proposed workflow for the assessment of the damage caused by the wildfires in California in 2017.</description><subject>Computer vision</subject><subject>Damage assessment</subject><subject>Decision making</subject><subject>Disaster management</subject><subject>Emergency procedures</subject><subject>Forest & brush fires</subject><subject>Machine learning</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Wildfires</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzNEKgjAUxvERBEn5Dge6Fuamrq7D6D7vZdRRJnOznXnh22fRA3T1wZ8f34YlQso8OxVC7FhKNHDORaVEWcqENXcd0VoTEcyoewwLaKftQoag8wH8hEFH49cGT_0RoImQaEQXwTioRww9uscCZOL8pXRg205bwvS3e3a81s3llk3Bv2ak2A5-DusltYKrvDoXSgn5n3oDERZBnw</recordid><startdate>20180219</startdate><enddate>20180219</enddate><creator>Trekin, Alexey</creator><creator>Novikov, German</creator><creator>Potapov, Georgy</creator><creator>Ignatiev, Vladimir</creator><creator>Burnaev, Evgeny</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180219</creationdate><title>Satellite imagery analysis for operational damage assessment in Emergency situations</title><author>Trekin, Alexey ; Novikov, German ; Potapov, Georgy ; Ignatiev, Vladimir ; Burnaev, Evgeny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20716947723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer vision</topic><topic>Damage assessment</topic><topic>Decision making</topic><topic>Disaster management</topic><topic>Emergency procedures</topic><topic>Forest & brush fires</topic><topic>Machine learning</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Wildfires</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Trekin, Alexey</creatorcontrib><creatorcontrib>Novikov, German</creatorcontrib><creatorcontrib>Potapov, Georgy</creatorcontrib><creatorcontrib>Ignatiev, Vladimir</creatorcontrib><creatorcontrib>Burnaev, Evgeny</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trekin, Alexey</au><au>Novikov, German</au><au>Potapov, Georgy</au><au>Ignatiev, Vladimir</au><au>Burnaev, Evgeny</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Satellite imagery analysis for operational damage assessment in Emergency situations</atitle><jtitle>arXiv.org</jtitle><date>2018-02-19</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>When major disaster occurs the questions are raised how to estimate the damage in time to support the decision making process and relief efforts by local authorities or humanitarian teams. In this paper we consider the use of Machine Learning and Computer Vision on remote sensing imagery to improve time efficiency of assessment of damaged buildings in disaster affected area. We propose a general workflow that can be useful in various disaster management applications, and demonstrate the use of the proposed workflow for the assessment of the damage caused by the wildfires in California in 2017.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071694772 |
source | Free E- Journals |
subjects | Computer vision Damage assessment Decision making Disaster management Emergency procedures Forest & brush fires Machine learning Remote sensing Satellite imagery Wildfires Workflow |
title | Satellite imagery analysis for operational damage assessment in Emergency situations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Satellite%20imagery%20analysis%20for%20operational%20damage%20assessment%20in%20Emergency%20situations&rft.jtitle=arXiv.org&rft.au=Trekin,%20Alexey&rft.date=2018-02-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071694772%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071694772&rft_id=info:pmid/&rfr_iscdi=true |