Satellite imagery analysis for operational damage assessment in Emergency situations

When major disaster occurs the questions are raised how to estimate the damage in time to support the decision making process and relief efforts by local authorities or humanitarian teams. In this paper we consider the use of Machine Learning and Computer Vision on remote sensing imagery to improve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-02
Hauptverfasser: Trekin, Alexey, Novikov, German, Potapov, Georgy, Ignatiev, Vladimir, Burnaev, Evgeny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When major disaster occurs the questions are raised how to estimate the damage in time to support the decision making process and relief efforts by local authorities or humanitarian teams. In this paper we consider the use of Machine Learning and Computer Vision on remote sensing imagery to improve time efficiency of assessment of damaged buildings in disaster affected area. We propose a general workflow that can be useful in various disaster management applications, and demonstrate the use of the proposed workflow for the assessment of the damage caused by the wildfires in California in 2017.
ISSN:2331-8422