A boundary regularity result for minimizers of variational integrals with nonstandard growth

We prove global Lipschitz regularity for a wide class of convex variational integrals among all functions in \(W^{1,1}\) with prescribed (sufficiently regular) boundary values, which are not assumed to satisfy any geometrical constraint (as for example bounded slope condition). Furthermore, we do no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-02
Hauptverfasser: Bulíček, Miroslav, Maringová, Erika, Stroffolini, Bianca, Verde, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove global Lipschitz regularity for a wide class of convex variational integrals among all functions in \(W^{1,1}\) with prescribed (sufficiently regular) boundary values, which are not assumed to satisfy any geometrical constraint (as for example bounded slope condition). Furthermore, we do not assume any restrictive assumption on the geometry of the domain and the result is valid for all sufficiently smooth domains. The result is achieved with a suitable approximation of the functional together with a new construction of appropriate barrier functions.
ISSN:2331-8422