In-database connected component analysis
We describe a Big Data-practical, SQL-implementable algorithm for efficiently determining connected components for graph data stored in a Massively Parallel Processing (MPP) relational database. The algorithm described is a linear-space, randomised algorithm, always terminating with the correct answ...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a Big Data-practical, SQL-implementable algorithm for efficiently determining connected components for graph data stored in a Massively Parallel Processing (MPP) relational database. The algorithm described is a linear-space, randomised algorithm, always terminating with the correct answer but subject to a stochastic running time, such that for any \(\epsilon>0\) and any input graph \(G=\langle V, E \rangle\) the algorithm terminates after \(\mathop{\text{O}}(\log |V|)\) SQL queries with probability of at least \(1-\epsilon\), which we show empirically to translate to a quasi-linear runtime in practice. |
---|---|
ISSN: | 2331-8422 |