Discrete geometry and isotropic surfaces

We consider smooth isotropic immersions from the 2-dimensional torus into \(R^{2n}\), for \(n \geq 2\). When \(n = 2\) the image of such map is an immersed Lagrangian torus of \(R^4\). We prove that such isotropic immersions can be approximated by arbitrarily \(C^0\)-close piecewise linear isotropic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-05
Hauptverfasser: Jauberteau, François, Rollin, Yann, Tapie, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider smooth isotropic immersions from the 2-dimensional torus into \(R^{2n}\), for \(n \geq 2\). When \(n = 2\) the image of such map is an immersed Lagrangian torus of \(R^4\). We prove that such isotropic immersions can be approximated by arbitrarily \(C^0\)-close piecewise linear isotropic maps. If \(n \geq 3\) the piecewise linear isotropic maps can be chosen so that they are piecewise linear isotropic immersions as well. The proofs are obtained using analogies with an infinite dimensional moment map geometry due to Donaldson. As a byproduct of these considerations, we introduce a numerical flow in finite dimension, whose limit provide, from an experimental perspective, many examples of piecewise linear Lagrangian tori in \(R^4\). The DMMF program, which is freely available, is based on the Euler method and shows the evolution equation of discrete surfaces in real time, as a movie.
ISSN:2331-8422