An Introduction to Supersymmetric Cluster Algebras

In this paper we propose the notion of cluster superalgebras which is a supersymmetric version of the classical cluster algebras introduced by Fomin and Zelevinsky. We show that the symplectic-orthogonal supergroup \(SpO(2|1)\) admits a cluster superalgebra structure and as a consequence of this, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-01
Hauptverfasser: Li, Li, Mixco, James, Ransingh, B, Srivastava, Ashish K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we propose the notion of cluster superalgebras which is a supersymmetric version of the classical cluster algebras introduced by Fomin and Zelevinsky. We show that the symplectic-orthogonal supergroup \(SpO(2|1)\) admits a cluster superalgebra structure and as a consequence of this, we deduce that the supercommutative superalgebra generated by all the entries of a superfrieze is a subalgebra of a cluster superalgebra. We also show that the coordinate superalgebra of the super Grassmannian \(G(2|0; 4|1)\) of chiral conformal superspace (that is, \((2|0)\) planes inside the superspace \(\mathbb C^{4|1}\)) is a quotient of a cluster superalgebra.
ISSN:2331-8422