Improved GQ-CNN: Deep Learning Model for Planning Robust Grasps

Recent developments in the field of robot grasping have shown great improvements in the grasp success rates when dealing with unknown objects. In this work we improve on one of the most promising approaches, the Grasp Quality Convolutional Neural Network (GQ-CNN) trained on the DexNet 2.0 dataset. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-02
Hauptverfasser: Jaśkowski, Maciej, Świątkowski, Jakub, Zając, Michał, Klimek, Maciej, Potiuk, Jarek, Rybicki, Piotr, Polatowski, Piotr, Walczyk, Przemysław, Nowicki, Kacper, Cygan, Marek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent developments in the field of robot grasping have shown great improvements in the grasp success rates when dealing with unknown objects. In this work we improve on one of the most promising approaches, the Grasp Quality Convolutional Neural Network (GQ-CNN) trained on the DexNet 2.0 dataset. We propose a new architecture for the GQ-CNN and describe practical improvements that increase the model validation accuracy from 92.2% to 95.8% and from 85.9% to 88.0% on respectively image-wise and object-wise training and validation splits.
ISSN:2331-8422