A note on symplectic topology of \(b\)-manifolds

A Poisson manifold \((M^{2n},\p)\) is \(b\)-symplectic if \(\bigwedge^n\p\) is transverse to the zero section. In this paper we apply techniques native to Symplectic Topology to address questions pertaining to \(b\)-symplectic manifolds. We provide constructions of \(b\)-symplectic structures on ope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-11
Hauptverfasser: Frejlich, Pedro, David Martínez Torres, Miranda, Eva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Poisson manifold \((M^{2n},\p)\) is \(b\)-symplectic if \(\bigwedge^n\p\) is transverse to the zero section. In this paper we apply techniques native to Symplectic Topology to address questions pertaining to \(b\)-symplectic manifolds. We provide constructions of \(b\)-symplectic structures on open manifolds by Gromov's \(h\)-principle, and of \(b\)-symplectic manifolds with a prescribed singular locus, by means of surgeries.
ISSN:2331-8422