A note on symplectic topology of \(b\)-manifolds
A Poisson manifold \((M^{2n},\p)\) is \(b\)-symplectic if \(\bigwedge^n\p\) is transverse to the zero section. In this paper we apply techniques native to Symplectic Topology to address questions pertaining to \(b\)-symplectic manifolds. We provide constructions of \(b\)-symplectic structures on ope...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Poisson manifold \((M^{2n},\p)\) is \(b\)-symplectic if \(\bigwedge^n\p\) is transverse to the zero section. In this paper we apply techniques native to Symplectic Topology to address questions pertaining to \(b\)-symplectic manifolds. We provide constructions of \(b\)-symplectic structures on open manifolds by Gromov's \(h\)-principle, and of \(b\)-symplectic manifolds with a prescribed singular locus, by means of surgeries. |
---|---|
ISSN: | 2331-8422 |