Generalized Weyl modules and Demazure submodules of level-zero extremal weight modules

We study a relationship between the graded characters of generalized Weyl modules \(W_{w \lambda}\), \(w \in W\), over the positive part of the affine Lie algebra and those of specific quotients \(V_{w}^- (\lambda) / X_{w}^- (\lambda)\), \(w \in W\), of the Demazure submodules \(V_{w}^- (\lambda)\)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-02
1. Verfasser: Nomoto, Fumihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a relationship between the graded characters of generalized Weyl modules \(W_{w \lambda}\), \(w \in W\), over the positive part of the affine Lie algebra and those of specific quotients \(V_{w}^- (\lambda) / X_{w}^- (\lambda)\), \(w \in W\), of the Demazure submodules \(V_{w}^- (\lambda)\) of the extremal weight modules \(V(\lambda)\) over the quantum affine algebra, where \(W\) is the finite Weyl group and \(\lambda\) is a dominant weight. More precisely, we prove that a specific quotient of the Demazure submodule is a quantum analog of a generalized Weyl module.
ISSN:2331-8422