Two Dimensional Plane, Modified Symplectic Structure and Quantization

Noncommutative quantum mechanics on the plane has been widely studied in the literature. Here, we consider the problem using Isham's canonical group quantization scheme for which the primary object is the symmetry group that underlies the phase space. The noncommutativity of the configuration s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-02
Hauptverfasser: Umar, Mohd Faudzi, Nurisya Mohd Shah, Zainuddin, Hishamuddin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Noncommutative quantum mechanics on the plane has been widely studied in the literature. Here, we consider the problem using Isham's canonical group quantization scheme for which the primary object is the symmetry group that underlies the phase space. The noncommutativity of the configuration space coordinates requires us to introduce the noncommutative term in the symplectic structure of the system. This modified symplectic structure will modify the group acting on the configuration space from abelian \(\mathbb{R}^2\) to a nonabelian one. As a result, the canonical group obtained is a deformed Heisenberg group and the canonical commutation relation (CCR) corresponds to what is usually found in noncommutative quantum mechanics.
ISSN:2331-8422