Existence of traveling wave solutions of parabolic–parabolic chemotaxis systems
The current paper is devoted to the study of traveling wave solutions of the following parabolic–parabolicchemotaxis system, ut=Δu−χ∇⋅(u∇v)+u(a−bu),x∈RNτvt=Δv−v+u,x∈RN,where u(x,t) represents the population density of a mobile species and v(x,t) represents the population density of a chemoattractant...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2018-08, Vol.42, p.93-119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The current paper is devoted to the study of traveling wave solutions of the following parabolic–parabolicchemotaxis system, ut=Δu−χ∇⋅(u∇v)+u(a−bu),x∈RNτvt=Δv−v+u,x∈RN,where u(x,t) represents the population density of a mobile species and v(x,t) represents the population density of a chemoattractant, and χ represents the chemotaxis sensitivity.
In an earlier work (Rachidi et al., 2017) by the authors of the current paper, traveling wave solutions of the above chemotaxis system with τ=0 are studied. It is shown in Rachidi et al. (2017) that for every 00, there is0 |
---|---|
ISSN: | 1468-1218 1878-5719 |
DOI: | 10.1016/j.nonrwa.2017.12.004 |