Existence of traveling wave solutions of parabolic–parabolic chemotaxis systems

The current paper is devoted to the study of traveling wave solutions of the following parabolic–parabolicchemotaxis system, ut=Δu−χ∇⋅(u∇v)+u(a−bu),x∈RNτvt=Δv−v+u,x∈RN,where u(x,t) represents the population density of a mobile species and v(x,t) represents the population density of a chemoattractant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2018-08, Vol.42, p.93-119
Hauptverfasser: Salako, Rachidi B., Shen, Wenxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current paper is devoted to the study of traveling wave solutions of the following parabolic–parabolicchemotaxis system, ut=Δu−χ∇⋅(u∇v)+u(a−bu),x∈RNτvt=Δv−v+u,x∈RN,where u(x,t) represents the population density of a mobile species and v(x,t) represents the population density of a chemoattractant, and χ represents the chemotaxis sensitivity. In an earlier work (Rachidi et al., 2017) by the authors of the current paper, traveling wave solutions of the above chemotaxis system with τ=0 are studied. It is shown in Rachidi et al. (2017) that for every 00, there is0
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2017.12.004