An efficient and modular grad–div stabilization
This paper presents two modular grad–div algorithms for calculating solutions to the Navier–Stokes equations (NSE). These algorithms add to an NSE code a minimally intrusive module that implements grad–div stabilization. The algorithms do not suffer from either solver breakdown or debilitating slow...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2018-06, Vol.335, p.327-346 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents two modular grad–div algorithms for calculating solutions to the Navier–Stokes equations (NSE). These algorithms add to an NSE code a minimally intrusive module that implements grad–div stabilization. The algorithms do not suffer from either solver breakdown or debilitating slow down for large values of grad–div parameters. Stability and optimal-order convergence of the methods are proven. Numerical tests confirm the theory and illustrate the benefits of these algorithms over a fully coupled grad–div stabilization. |
---|---|
ISSN: | 0045-7825 1879-2138 |
DOI: | 10.1016/j.cma.2018.02.023 |