Twists and Twistability
Metrically homogeneous graphs are connected graphs which, when endowed with the path metric, are homogeneous as metric spaces. In this paper we introduce the concept of twisted automorphisms, a notion of isomorphism up to a permutation of the language. We find all permutations of the language which...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-02 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metrically homogeneous graphs are connected graphs which, when endowed with the path metric, are homogeneous as metric spaces. In this paper we introduce the concept of twisted automorphisms, a notion of isomorphism up to a permutation of the language. We find all permutations of the language which are associated with twisted automorphisms of metrically homogeneous graphs. For each non-trivial permutation of this type we also characterize the class of metrically homogeneous graphs which allow a twisted isomorphism associated with that permutation. The permutations we find are, remarkably, precisely those found by Bannai and Bannai in an analogous result in the context of finite association schemes. |
---|---|
ISSN: | 2331-8422 |