Existence of ground state solution and concentration of maxima for a class of indefinite variational problems
In this paper we study the existence of ground state solution and concentration of maxima for a class of strongly indefinite problem like $$ \left\{\begin{array}{l} -\Delta u+V(x)u=A(\epsilon x)f(u) \quad \mbox{in} \quad \R^{N}, \\ u\in H^{1}(\R^{N}), \end{array}\right. \eqno{(P)_{\epsilon}} $$ wher...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the existence of ground state solution and concentration of maxima for a class of strongly indefinite problem like $$ \left\{\begin{array}{l} -\Delta u+V(x)u=A(\epsilon x)f(u) \quad \mbox{in} \quad \R^{N}, \\ u\in H^{1}(\R^{N}), \end{array}\right. \eqno{(P)_{\epsilon}} $$ where \(N \geq 1\), \(\epsilon\) is a positive parameter, \(f: \mathbb{R} \to \mathbb{R}\) is a continuous function with subcritical growth and \(V,A: \mathbb{R}^{N} \to \mathbb{R}\) are continuous functions verifying some technical conditions. Here \(V\) is a \(\mathbb{Z}^N\)-periodic function, \(0 \not\in \sigma(-\Delta + V)\), the spectrum of \(-\Delta +V\), and $$ 0 < \inf_{x \in \R^{N}}A(x)\leq \displaystyle\lim_{|x|\rightarrow+\infty}A(x) |
---|---|
ISSN: | 2331-8422 |