Well-posedness of a Debye type system endowed with a full wave equation
We prove well-posedness for a transport-diffusion problem coupled with a wave equation for the potential. We assume that the initial data are small. A bilinear form in the spirit of Kato's proof for the Navier-Stokes equations is used, coupled with suitable estimates in Chemin-Lerner spaces. In...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-01 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove well-posedness for a transport-diffusion problem coupled with a wave equation for the potential. We assume that the initial data are small. A bilinear form in the spirit of Kato's proof for the Navier-Stokes equations is used, coupled with suitable estimates in Chemin-Lerner spaces. In the one dimensional case, we get well-posedness for arbitrarily large initial data by using Gagliardo-Nirenberg inequalities. |
---|---|
ISSN: | 2331-8422 |