The rank function of a positroid and non-crossing partitions

A positroid is a special case of a realizable matroid, that arose from the study of totally nonnegative part of the Grassmannian by Postnikov. Postnikov demonstrated that positroids are in bijection with certain interesting classes of combinatorial objects, such as Grassmann necklaces and decorated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-07
Hauptverfasser: Mcalmon, Robert, Oh, SuHo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A positroid is a special case of a realizable matroid, that arose from the study of totally nonnegative part of the Grassmannian by Postnikov. Postnikov demonstrated that positroids are in bijection with certain interesting classes of combinatorial objects, such as Grassmann necklaces and decorated permutations. The bases of a positroid can be described directly in terms of the Grassmann necklace and decorated permutation. In this paper, we show that the rank of an arbitrary set in a positroid can be computed directly from the associated decorated permutation using non-crossing partitions.
ISSN:2331-8422