On randomized counting versus randomised decision

We study the question of which counting problems admit f.p.r.a.s., under a structural complexity perspective. Since problems in #P with NP-complete decision version do not admit f.p.r.a.s. (unless NP = RP), we study subclasses of #P, having decision version either in P or in RP. We explore inclusion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-01
1. Verfasser: Bakali, Eleni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the question of which counting problems admit f.p.r.a.s., under a structural complexity perspective. Since problems in #P with NP-complete decision version do not admit f.p.r.a.s. (unless NP = RP), we study subclasses of #P, having decision version either in P or in RP. We explore inclusions between these subclasses and we present all possible worlds with respect to NP v.s. RP and RP v.s. P.
ISSN:2331-8422