A porous Zn cathode for Li–CO2 batteries generating fuel-gas CO

Global climate change and energy concerns trigger worldwide interest in sustainable, economical CO2 reductive transformation into valuable chemicals. However, traditional electro/thermo-catalysis strategies usually consume a large amount of energy and suffer from low efficiency. Herein, a three-dime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (28), p.13952-13958
Hauptverfasser: Xie, Jiafang, Liu, Qin, Huang, Yiyin, Wu, Maoxiang, Wang, Yaobing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Global climate change and energy concerns trigger worldwide interest in sustainable, economical CO2 reductive transformation into valuable chemicals. However, traditional electro/thermo-catalysis strategies usually consume a large amount of energy and suffer from low efficiency. Herein, a three-dimensional porous fractal Zn cathode is synthesized by redox-coupled electrodeposition and it exhibits excellent electrocatalytic properties for CO2-to-CO conversion. Inspired by the coupling of a metal battery and CO2 electroreduction, a novel fuel-gas CO generating Li–CO2 battery is firstly realized with the as-prepared porous fractal Zn cathode. Meanwhile, CO formation can be easily tuned within a wide range of discharge currents and reach a maximum faradaic efficiency of up to 67%. Finally, based on gas and solid discharge product analysis, the related mechanism of CO main product production is proposed as 2Li+ + 2CO2 + 2e− → CO + Li2CO3. Hence the present work presents a new way for the further development of metal–CO2 batteries to generate useful chemicals and fuels besides electrical energy.
ISSN:2050-7488
2050-7496
DOI:10.1039/c8ta02771d