Single-Velocity Model of Two-Phase Liquids for Calculating Flows According to the First Principles’ Approach

A single velocity model of one-component media for calculating two-phase flows is presented. The model is based on conservation laws with minimal additional assumptions. The model and numerical method are intended for the direct numerical simulation (DNS) of complex two-phase flows with high-perform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical models and computer simulations 2018-07, Vol.10 (4), p.387-397
Hauptverfasser: Zaitsev, N. A., Kritskiy, B. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A single velocity model of one-component media for calculating two-phase flows is presented. The model is based on conservation laws with minimal additional assumptions. The model and numerical method are intended for the direct numerical simulation (DNS) of complex two-phase flows with high-performance computing systems (exascale computing). The closed set of governing equations is written for nonaveraged parameters (so-called microparameters) and for a medium with a complex equation of state. It is assumed that each point of the flow is completely characterized by a single density, single velocity, and single internal energy. The diffused interface model is used for describing an interphase boundary. A method for generating the relationship between thermodynamic functions and all possible values of density and internal energy is presented. The real functions for the pure phases are used. The hydrodynamic basis of the model consists of Navier-Stokes equations or Euler equations that take heat conductivity processes into consideration. The reliability of the model is tested on a 1D problem for real water, in particular, on the Stefan problem and on the problem on the formation and coalescence of bubbles.
ISSN:2070-0482
2070-0490
DOI:10.1134/S2070048218040166