Frobenius Structures Over Hilbert C-Modules
We study the monoidal dagger category of Hilbert C*-modules over a commutative C*-algebra from the perspective of categorical quantum mechanics. The dual objects are the finitely presented projective Hilbert C*-modules. Special dagger Frobenius structures correspond to bundles of uniformly finite-di...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2018-07, Vol.361 (2), p.787-824 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the monoidal dagger category of Hilbert C*-modules over a commutative C*-algebra from the perspective of categorical quantum mechanics. The dual objects are the finitely presented projective Hilbert C*-modules. Special dagger Frobenius structures correspond to bundles of uniformly finite-dimensional C*-algebras. A monoid is dagger Frobenius over the base if and only if it is dagger Frobenius over its centre and the centre is dagger Frobenius over the base. We characterise the commutative dagger Frobenius structures as finite coverings, and give nontrivial examples of both commutative and central dagger Frobenius structures. Subobjects of the tensor unit correspond to clopen subsets of the Gelfand spectrum of the C*-algebra, and we discuss dagger kernels. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-018-3166-0 |