Quantitative characterization of recyclable resources dismantled from waste liquid crystal display products

Currently only limited materials, such as common metals and plastics, are recovered from waste flat-panel displays, thus necessitating the development of a comprehensive recycling process. This study aims to establish a statistical database about the types and amounts of valuable resources in waste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of material cycles and waste management 2018-10, Vol.20 (4), p.2054-2061
Hauptverfasser: Hong, Hyun Seon, Choi, A. Ran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently only limited materials, such as common metals and plastics, are recovered from waste flat-panel displays, thus necessitating the development of a comprehensive recycling process. This study aims to establish a statistical database about the types and amounts of valuable resources in waste liquid crystal display (LCD) products. To obtain these data, the waste LCD products were disassembled into four components: plastics, printed circuit boards, metals, and other materials, including their panels, and the weight of each component was measured. Overall, the product weight decreased with increasing manufacturing year regardless of the product screen size; however, the decreasing rate varied from 14 to 73%. The metal weight ratios decreased significantly by 24–31%. Meanwhile, regardless of the manufacturing year, the plastic weight ratios remained almost constant at about 20%. On the other hand, the weight ratio of the other components increased by 26–46% with increasing manufacturing year suggesting that rare-earth metal recycling has become more important. These statistical analyses are expected to contribute to the development of an eco-friendly, high-efficiency dismantling/separation process that will enable higher value recycling and minimal waste disposal.
ISSN:1438-4957
1611-8227
DOI:10.1007/s10163-018-0758-x