Using sensor arrays to decode NO^sub x^/NH^sub 3^/C^sub 3^H^sub 8^ gas mixtures for automotive exhaust monitoring
An array of four mixed-potential sensors is employed to identify and quantify gases in complex mixtures of unknown composition which mimic diesel engine exhaust. The sensors use dense metal and metal oxide electrodes with a porous ceramic electrolyte, yttria-stabilized zirconia (YSZ). Since the sens...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. B, Chemical Chemical, 2018-07, Vol.264, p.110 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110 |
container_title | Sensors and actuators. B, Chemical |
container_volume | 264 |
creator | Javed, Unab Ramaiyan, Kannan P Kreller, Cortney R Brosha, Eric L Mukundan, Rangachary Morozov, Alexandre V |
description | An array of four mixed-potential sensors is employed to identify and quantify gases in complex mixtures of unknown composition which mimic diesel engine exhaust. The sensors use dense metal and metal oxide electrodes with a porous ceramic electrolyte, yttria-stabilized zirconia (YSZ). Since the sensors exhibit cross-specificity toward target gases, we develop a computational model for predicting gas concentrations in the mixtures. Our model is based on fundamental principles of gas-sensor interactions and, furthermore, takes into account the non-linearity of the observed sensor voltage response. Our approach enables accurate predictions of gas concentrations from the voltage output of the sensor array exposed to an extensive set of mixtures involving C3H8, NH3, NO and NO2. We find that our predictions remain accurate even if the model is trained using a reduced set of mixtures, or if the number of sensors is decreased to three or two. Our experimental and computational framework can be used to decipher contents of complex gas mixtures of unknown composition in numerous industrial, automotive, and national security settings. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2070444103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070444103</sourcerecordid><originalsourceid>FETCH-proquest_journals_20704441033</originalsourceid><addsrcrecordid>eNqNjc0OwUAUhSdCon7e4SbWTS8zlHVDrNiwrQwGFe3VuTNSb69-HsDqfDnn5JyGCIbTWIYS47gpApyNxqFCHLdFh_mKiEpOMBDllrPiDGwKJgvaWv1kcARHc6CjgdU6Zb-HKo1Wyw_JNEp-8DWmKZw1Q55VzlvDcHrPeEc5uexhwFQX7dlBTkXmyNZfPdE66Rub_k-7YrCYb5JleLdUesNudyVvizrajTBGpdQQpfyv9QK9TEud</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070444103</pqid></control><display><type>article</type><title>Using sensor arrays to decode NO^sub x^/NH^sub 3^/C^sub 3^H^sub 8^ gas mixtures for automotive exhaust monitoring</title><source>Elsevier ScienceDirect Journals</source><creator>Javed, Unab ; Ramaiyan, Kannan P ; Kreller, Cortney R ; Brosha, Eric L ; Mukundan, Rangachary ; Morozov, Alexandre V</creator><creatorcontrib>Javed, Unab ; Ramaiyan, Kannan P ; Kreller, Cortney R ; Brosha, Eric L ; Mukundan, Rangachary ; Morozov, Alexandre V</creatorcontrib><description>An array of four mixed-potential sensors is employed to identify and quantify gases in complex mixtures of unknown composition which mimic diesel engine exhaust. The sensors use dense metal and metal oxide electrodes with a porous ceramic electrolyte, yttria-stabilized zirconia (YSZ). Since the sensors exhibit cross-specificity toward target gases, we develop a computational model for predicting gas concentrations in the mixtures. Our model is based on fundamental principles of gas-sensor interactions and, furthermore, takes into account the non-linearity of the observed sensor voltage response. Our approach enables accurate predictions of gas concentrations from the voltage output of the sensor array exposed to an extensive set of mixtures involving C3H8, NH3, NO and NO2. We find that our predictions remain accurate even if the model is trained using a reduced set of mixtures, or if the number of sensors is decreased to three or two. Our experimental and computational framework can be used to decipher contents of complex gas mixtures of unknown composition in numerous industrial, automotive, and national security settings.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><language>eng</language><publisher>Lausanne: Elsevier Science Ltd</publisher><subject>Ammonia ; Automobile industry ; Automotive engineering ; Automotive engines ; Catalysts ; Composition ; Computation ; Diesel engines ; Electric potential ; Energy efficiency ; Exhaust gases ; Gas mixtures ; Gases ; Linearity ; Mathematical models ; Nitrogen dioxide ; Predictions ; Sensor arrays ; Sensors ; Yttria-stabilized zirconia ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Sensors and actuators. B, Chemical, 2018-07, Vol.264, p.110</ispartof><rights>Copyright Elsevier Science Ltd. Jul 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Javed, Unab</creatorcontrib><creatorcontrib>Ramaiyan, Kannan P</creatorcontrib><creatorcontrib>Kreller, Cortney R</creatorcontrib><creatorcontrib>Brosha, Eric L</creatorcontrib><creatorcontrib>Mukundan, Rangachary</creatorcontrib><creatorcontrib>Morozov, Alexandre V</creatorcontrib><title>Using sensor arrays to decode NO^sub x^/NH^sub 3^/C^sub 3^H^sub 8^ gas mixtures for automotive exhaust monitoring</title><title>Sensors and actuators. B, Chemical</title><description>An array of four mixed-potential sensors is employed to identify and quantify gases in complex mixtures of unknown composition which mimic diesel engine exhaust. The sensors use dense metal and metal oxide electrodes with a porous ceramic electrolyte, yttria-stabilized zirconia (YSZ). Since the sensors exhibit cross-specificity toward target gases, we develop a computational model for predicting gas concentrations in the mixtures. Our model is based on fundamental principles of gas-sensor interactions and, furthermore, takes into account the non-linearity of the observed sensor voltage response. Our approach enables accurate predictions of gas concentrations from the voltage output of the sensor array exposed to an extensive set of mixtures involving C3H8, NH3, NO and NO2. We find that our predictions remain accurate even if the model is trained using a reduced set of mixtures, or if the number of sensors is decreased to three or two. Our experimental and computational framework can be used to decipher contents of complex gas mixtures of unknown composition in numerous industrial, automotive, and national security settings.</description><subject>Ammonia</subject><subject>Automobile industry</subject><subject>Automotive engineering</subject><subject>Automotive engines</subject><subject>Catalysts</subject><subject>Composition</subject><subject>Computation</subject><subject>Diesel engines</subject><subject>Electric potential</subject><subject>Energy efficiency</subject><subject>Exhaust gases</subject><subject>Gas mixtures</subject><subject>Gases</subject><subject>Linearity</subject><subject>Mathematical models</subject><subject>Nitrogen dioxide</subject><subject>Predictions</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Yttria-stabilized zirconia</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNjc0OwUAUhSdCon7e4SbWTS8zlHVDrNiwrQwGFe3VuTNSb69-HsDqfDnn5JyGCIbTWIYS47gpApyNxqFCHLdFh_mKiEpOMBDllrPiDGwKJgvaWv1kcARHc6CjgdU6Zb-HKo1Wyw_JNEp-8DWmKZw1Q55VzlvDcHrPeEc5uexhwFQX7dlBTkXmyNZfPdE66Rub_k-7YrCYb5JleLdUesNudyVvizrajTBGpdQQpfyv9QK9TEud</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Javed, Unab</creator><creator>Ramaiyan, Kannan P</creator><creator>Kreller, Cortney R</creator><creator>Brosha, Eric L</creator><creator>Mukundan, Rangachary</creator><creator>Morozov, Alexandre V</creator><general>Elsevier Science Ltd</general><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180701</creationdate><title>Using sensor arrays to decode NO^sub x^/NH^sub 3^/C^sub 3^H^sub 8^ gas mixtures for automotive exhaust monitoring</title><author>Javed, Unab ; Ramaiyan, Kannan P ; Kreller, Cortney R ; Brosha, Eric L ; Mukundan, Rangachary ; Morozov, Alexandre V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20704441033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ammonia</topic><topic>Automobile industry</topic><topic>Automotive engineering</topic><topic>Automotive engines</topic><topic>Catalysts</topic><topic>Composition</topic><topic>Computation</topic><topic>Diesel engines</topic><topic>Electric potential</topic><topic>Energy efficiency</topic><topic>Exhaust gases</topic><topic>Gas mixtures</topic><topic>Gases</topic><topic>Linearity</topic><topic>Mathematical models</topic><topic>Nitrogen dioxide</topic><topic>Predictions</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Yttria-stabilized zirconia</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javed, Unab</creatorcontrib><creatorcontrib>Ramaiyan, Kannan P</creatorcontrib><creatorcontrib>Kreller, Cortney R</creatorcontrib><creatorcontrib>Brosha, Eric L</creatorcontrib><creatorcontrib>Mukundan, Rangachary</creatorcontrib><creatorcontrib>Morozov, Alexandre V</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Javed, Unab</au><au>Ramaiyan, Kannan P</au><au>Kreller, Cortney R</au><au>Brosha, Eric L</au><au>Mukundan, Rangachary</au><au>Morozov, Alexandre V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using sensor arrays to decode NO^sub x^/NH^sub 3^/C^sub 3^H^sub 8^ gas mixtures for automotive exhaust monitoring</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>264</volume><spage>110</spage><pages>110-</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>An array of four mixed-potential sensors is employed to identify and quantify gases in complex mixtures of unknown composition which mimic diesel engine exhaust. The sensors use dense metal and metal oxide electrodes with a porous ceramic electrolyte, yttria-stabilized zirconia (YSZ). Since the sensors exhibit cross-specificity toward target gases, we develop a computational model for predicting gas concentrations in the mixtures. Our model is based on fundamental principles of gas-sensor interactions and, furthermore, takes into account the non-linearity of the observed sensor voltage response. Our approach enables accurate predictions of gas concentrations from the voltage output of the sensor array exposed to an extensive set of mixtures involving C3H8, NH3, NO and NO2. We find that our predictions remain accurate even if the model is trained using a reduced set of mixtures, or if the number of sensors is decreased to three or two. Our experimental and computational framework can be used to decipher contents of complex gas mixtures of unknown composition in numerous industrial, automotive, and national security settings.</abstract><cop>Lausanne</cop><pub>Elsevier Science Ltd</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-4005 |
ispartof | Sensors and actuators. B, Chemical, 2018-07, Vol.264, p.110 |
issn | 0925-4005 1873-3077 |
language | eng |
recordid | cdi_proquest_journals_2070444103 |
source | Elsevier ScienceDirect Journals |
subjects | Ammonia Automobile industry Automotive engineering Automotive engines Catalysts Composition Computation Diesel engines Electric potential Energy efficiency Exhaust gases Gas mixtures Gases Linearity Mathematical models Nitrogen dioxide Predictions Sensor arrays Sensors Yttria-stabilized zirconia Yttrium oxide Zirconium dioxide |
title | Using sensor arrays to decode NO^sub x^/NH^sub 3^/C^sub 3^H^sub 8^ gas mixtures for automotive exhaust monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20sensor%20arrays%20to%20decode%20NO%5Esub%20x%5E/NH%5Esub%203%5E/C%5Esub%203%5EH%5Esub%208%5E%20gas%20mixtures%20for%20automotive%20exhaust%20monitoring&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Javed,%20Unab&rft.date=2018-07-01&rft.volume=264&rft.spage=110&rft.pages=110-&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/&rft_dat=%3Cproquest%3E2070444103%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070444103&rft_id=info:pmid/&rfr_iscdi=true |