Using sensor arrays to decode NO^sub x^/NH^sub 3^/C^sub 3^H^sub 8^ gas mixtures for automotive exhaust monitoring

An array of four mixed-potential sensors is employed to identify and quantify gases in complex mixtures of unknown composition which mimic diesel engine exhaust. The sensors use dense metal and metal oxide electrodes with a porous ceramic electrolyte, yttria-stabilized zirconia (YSZ). Since the sens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2018-07, Vol.264, p.110
Hauptverfasser: Javed, Unab, Ramaiyan, Kannan P, Kreller, Cortney R, Brosha, Eric L, Mukundan, Rangachary, Morozov, Alexandre V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110
container_title Sensors and actuators. B, Chemical
container_volume 264
creator Javed, Unab
Ramaiyan, Kannan P
Kreller, Cortney R
Brosha, Eric L
Mukundan, Rangachary
Morozov, Alexandre V
description An array of four mixed-potential sensors is employed to identify and quantify gases in complex mixtures of unknown composition which mimic diesel engine exhaust. The sensors use dense metal and metal oxide electrodes with a porous ceramic electrolyte, yttria-stabilized zirconia (YSZ). Since the sensors exhibit cross-specificity toward target gases, we develop a computational model for predicting gas concentrations in the mixtures. Our model is based on fundamental principles of gas-sensor interactions and, furthermore, takes into account the non-linearity of the observed sensor voltage response. Our approach enables accurate predictions of gas concentrations from the voltage output of the sensor array exposed to an extensive set of mixtures involving C3H8, NH3, NO and NO2. We find that our predictions remain accurate even if the model is trained using a reduced set of mixtures, or if the number of sensors is decreased to three or two. Our experimental and computational framework can be used to decipher contents of complex gas mixtures of unknown composition in numerous industrial, automotive, and national security settings.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2070444103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070444103</sourcerecordid><originalsourceid>FETCH-proquest_journals_20704441033</originalsourceid><addsrcrecordid>eNqNjc0OwUAUhSdCon7e4SbWTS8zlHVDrNiwrQwGFe3VuTNSb69-HsDqfDnn5JyGCIbTWIYS47gpApyNxqFCHLdFh_mKiEpOMBDllrPiDGwKJgvaWv1kcARHc6CjgdU6Zb-HKo1Wyw_JNEp-8DWmKZw1Q55VzlvDcHrPeEc5uexhwFQX7dlBTkXmyNZfPdE66Rub_k-7YrCYb5JleLdUesNudyVvizrajTBGpdQQpfyv9QK9TEud</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070444103</pqid></control><display><type>article</type><title>Using sensor arrays to decode NO^sub x^/NH^sub 3^/C^sub 3^H^sub 8^ gas mixtures for automotive exhaust monitoring</title><source>Elsevier ScienceDirect Journals</source><creator>Javed, Unab ; Ramaiyan, Kannan P ; Kreller, Cortney R ; Brosha, Eric L ; Mukundan, Rangachary ; Morozov, Alexandre V</creator><creatorcontrib>Javed, Unab ; Ramaiyan, Kannan P ; Kreller, Cortney R ; Brosha, Eric L ; Mukundan, Rangachary ; Morozov, Alexandre V</creatorcontrib><description>An array of four mixed-potential sensors is employed to identify and quantify gases in complex mixtures of unknown composition which mimic diesel engine exhaust. The sensors use dense metal and metal oxide electrodes with a porous ceramic electrolyte, yttria-stabilized zirconia (YSZ). Since the sensors exhibit cross-specificity toward target gases, we develop a computational model for predicting gas concentrations in the mixtures. Our model is based on fundamental principles of gas-sensor interactions and, furthermore, takes into account the non-linearity of the observed sensor voltage response. Our approach enables accurate predictions of gas concentrations from the voltage output of the sensor array exposed to an extensive set of mixtures involving C3H8, NH3, NO and NO2. We find that our predictions remain accurate even if the model is trained using a reduced set of mixtures, or if the number of sensors is decreased to three or two. Our experimental and computational framework can be used to decipher contents of complex gas mixtures of unknown composition in numerous industrial, automotive, and national security settings.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><language>eng</language><publisher>Lausanne: Elsevier Science Ltd</publisher><subject>Ammonia ; Automobile industry ; Automotive engineering ; Automotive engines ; Catalysts ; Composition ; Computation ; Diesel engines ; Electric potential ; Energy efficiency ; Exhaust gases ; Gas mixtures ; Gases ; Linearity ; Mathematical models ; Nitrogen dioxide ; Predictions ; Sensor arrays ; Sensors ; Yttria-stabilized zirconia ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Sensors and actuators. B, Chemical, 2018-07, Vol.264, p.110</ispartof><rights>Copyright Elsevier Science Ltd. Jul 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Javed, Unab</creatorcontrib><creatorcontrib>Ramaiyan, Kannan P</creatorcontrib><creatorcontrib>Kreller, Cortney R</creatorcontrib><creatorcontrib>Brosha, Eric L</creatorcontrib><creatorcontrib>Mukundan, Rangachary</creatorcontrib><creatorcontrib>Morozov, Alexandre V</creatorcontrib><title>Using sensor arrays to decode NO^sub x^/NH^sub 3^/C^sub 3^H^sub 8^ gas mixtures for automotive exhaust monitoring</title><title>Sensors and actuators. B, Chemical</title><description>An array of four mixed-potential sensors is employed to identify and quantify gases in complex mixtures of unknown composition which mimic diesel engine exhaust. The sensors use dense metal and metal oxide electrodes with a porous ceramic electrolyte, yttria-stabilized zirconia (YSZ). Since the sensors exhibit cross-specificity toward target gases, we develop a computational model for predicting gas concentrations in the mixtures. Our model is based on fundamental principles of gas-sensor interactions and, furthermore, takes into account the non-linearity of the observed sensor voltage response. Our approach enables accurate predictions of gas concentrations from the voltage output of the sensor array exposed to an extensive set of mixtures involving C3H8, NH3, NO and NO2. We find that our predictions remain accurate even if the model is trained using a reduced set of mixtures, or if the number of sensors is decreased to three or two. Our experimental and computational framework can be used to decipher contents of complex gas mixtures of unknown composition in numerous industrial, automotive, and national security settings.</description><subject>Ammonia</subject><subject>Automobile industry</subject><subject>Automotive engineering</subject><subject>Automotive engines</subject><subject>Catalysts</subject><subject>Composition</subject><subject>Computation</subject><subject>Diesel engines</subject><subject>Electric potential</subject><subject>Energy efficiency</subject><subject>Exhaust gases</subject><subject>Gas mixtures</subject><subject>Gases</subject><subject>Linearity</subject><subject>Mathematical models</subject><subject>Nitrogen dioxide</subject><subject>Predictions</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Yttria-stabilized zirconia</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNjc0OwUAUhSdCon7e4SbWTS8zlHVDrNiwrQwGFe3VuTNSb69-HsDqfDnn5JyGCIbTWIYS47gpApyNxqFCHLdFh_mKiEpOMBDllrPiDGwKJgvaWv1kcARHc6CjgdU6Zb-HKo1Wyw_JNEp-8DWmKZw1Q55VzlvDcHrPeEc5uexhwFQX7dlBTkXmyNZfPdE66Rub_k-7YrCYb5JleLdUesNudyVvizrajTBGpdQQpfyv9QK9TEud</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Javed, Unab</creator><creator>Ramaiyan, Kannan P</creator><creator>Kreller, Cortney R</creator><creator>Brosha, Eric L</creator><creator>Mukundan, Rangachary</creator><creator>Morozov, Alexandre V</creator><general>Elsevier Science Ltd</general><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180701</creationdate><title>Using sensor arrays to decode NO^sub x^/NH^sub 3^/C^sub 3^H^sub 8^ gas mixtures for automotive exhaust monitoring</title><author>Javed, Unab ; Ramaiyan, Kannan P ; Kreller, Cortney R ; Brosha, Eric L ; Mukundan, Rangachary ; Morozov, Alexandre V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20704441033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ammonia</topic><topic>Automobile industry</topic><topic>Automotive engineering</topic><topic>Automotive engines</topic><topic>Catalysts</topic><topic>Composition</topic><topic>Computation</topic><topic>Diesel engines</topic><topic>Electric potential</topic><topic>Energy efficiency</topic><topic>Exhaust gases</topic><topic>Gas mixtures</topic><topic>Gases</topic><topic>Linearity</topic><topic>Mathematical models</topic><topic>Nitrogen dioxide</topic><topic>Predictions</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Yttria-stabilized zirconia</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javed, Unab</creatorcontrib><creatorcontrib>Ramaiyan, Kannan P</creatorcontrib><creatorcontrib>Kreller, Cortney R</creatorcontrib><creatorcontrib>Brosha, Eric L</creatorcontrib><creatorcontrib>Mukundan, Rangachary</creatorcontrib><creatorcontrib>Morozov, Alexandre V</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Javed, Unab</au><au>Ramaiyan, Kannan P</au><au>Kreller, Cortney R</au><au>Brosha, Eric L</au><au>Mukundan, Rangachary</au><au>Morozov, Alexandre V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using sensor arrays to decode NO^sub x^/NH^sub 3^/C^sub 3^H^sub 8^ gas mixtures for automotive exhaust monitoring</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>264</volume><spage>110</spage><pages>110-</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>An array of four mixed-potential sensors is employed to identify and quantify gases in complex mixtures of unknown composition which mimic diesel engine exhaust. The sensors use dense metal and metal oxide electrodes with a porous ceramic electrolyte, yttria-stabilized zirconia (YSZ). Since the sensors exhibit cross-specificity toward target gases, we develop a computational model for predicting gas concentrations in the mixtures. Our model is based on fundamental principles of gas-sensor interactions and, furthermore, takes into account the non-linearity of the observed sensor voltage response. Our approach enables accurate predictions of gas concentrations from the voltage output of the sensor array exposed to an extensive set of mixtures involving C3H8, NH3, NO and NO2. We find that our predictions remain accurate even if the model is trained using a reduced set of mixtures, or if the number of sensors is decreased to three or two. Our experimental and computational framework can be used to decipher contents of complex gas mixtures of unknown composition in numerous industrial, automotive, and national security settings.</abstract><cop>Lausanne</cop><pub>Elsevier Science Ltd</pub></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2018-07, Vol.264, p.110
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2070444103
source Elsevier ScienceDirect Journals
subjects Ammonia
Automobile industry
Automotive engineering
Automotive engines
Catalysts
Composition
Computation
Diesel engines
Electric potential
Energy efficiency
Exhaust gases
Gas mixtures
Gases
Linearity
Mathematical models
Nitrogen dioxide
Predictions
Sensor arrays
Sensors
Yttria-stabilized zirconia
Yttrium oxide
Zirconium dioxide
title Using sensor arrays to decode NO^sub x^/NH^sub 3^/C^sub 3^H^sub 8^ gas mixtures for automotive exhaust monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20sensor%20arrays%20to%20decode%20NO%5Esub%20x%5E/NH%5Esub%203%5E/C%5Esub%203%5EH%5Esub%208%5E%20gas%20mixtures%20for%20automotive%20exhaust%20monitoring&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Javed,%20Unab&rft.date=2018-07-01&rft.volume=264&rft.spage=110&rft.pages=110-&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/&rft_dat=%3Cproquest%3E2070444103%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070444103&rft_id=info:pmid/&rfr_iscdi=true