Using sensor arrays to decode NO^sub x^/NH^sub 3^/C^sub 3^H^sub 8^ gas mixtures for automotive exhaust monitoring

An array of four mixed-potential sensors is employed to identify and quantify gases in complex mixtures of unknown composition which mimic diesel engine exhaust. The sensors use dense metal and metal oxide electrodes with a porous ceramic electrolyte, yttria-stabilized zirconia (YSZ). Since the sens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2018-07, Vol.264, p.110
Hauptverfasser: Javed, Unab, Ramaiyan, Kannan P, Kreller, Cortney R, Brosha, Eric L, Mukundan, Rangachary, Morozov, Alexandre V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An array of four mixed-potential sensors is employed to identify and quantify gases in complex mixtures of unknown composition which mimic diesel engine exhaust. The sensors use dense metal and metal oxide electrodes with a porous ceramic electrolyte, yttria-stabilized zirconia (YSZ). Since the sensors exhibit cross-specificity toward target gases, we develop a computational model for predicting gas concentrations in the mixtures. Our model is based on fundamental principles of gas-sensor interactions and, furthermore, takes into account the non-linearity of the observed sensor voltage response. Our approach enables accurate predictions of gas concentrations from the voltage output of the sensor array exposed to an extensive set of mixtures involving C3H8, NH3, NO and NO2. We find that our predictions remain accurate even if the model is trained using a reduced set of mixtures, or if the number of sensors is decreased to three or two. Our experimental and computational framework can be used to decipher contents of complex gas mixtures of unknown composition in numerous industrial, automotive, and national security settings.
ISSN:0925-4005
1873-3077