1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries

As a promising anode candidate for lithium ion batteries (LIBs), MnO has attracted wide attentions owing to its theoretically high Li-storage capacity, lower working voltage and polarization than other oxides, low cost, environmental friendliness, and abundant resources. Herein, we develop a facile...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2018-02, Vol.264, p.292-300
Hauptverfasser: Liu, Dao-Sheng, Liu, Dai-Huo, Hou, Bao-Hua, Wang, Ying-Ying, Guo, Jin-Zhi, Ning, Qiu-Li, Wu, Xing-Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a promising anode candidate for lithium ion batteries (LIBs), MnO has attracted wide attentions owing to its theoretically high Li-storage capacity, lower working voltage and polarization than other oxides, low cost, environmental friendliness, and abundant resources. Herein, we develop a facile and low-cost strategy to fabricate a unique porous MnO@N-doped carbon (MnO@N-C) nanotube and demonstrate its outstanding Li-storage properties as anode material for LIBs. Benefiting from its unique 1D porous features, the prepared MnO@N-C electrodes exhibit high reversible specific capacity (971.8 mAh g−1 at 0.1 A g−1), superb high-rate capability (359.5 mAh g−1 at 30 A g−1) and remarkable cycling stability (441.5 mA h g−1 after 3500 cycles at 10 A g−1). Such superior electrochemical performance should be due to the high conductivity and protection effects of N-doped carbon layer, and adequate internal voids in the MnO@N-C to effectively accommodate the volume changes of MnO during cycling. In addition, it is also disclosed that the high capacity contribution arises from the pseudocapacitive charge storage.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2018.01.129