High Performance Static Segment On-Chip Memory for Image Processing Applications
The performance of the processor core depends on the configuration parameters and utilization of on-chip memory in multimedia applications such as image, video and audio processing. The design of the on-chip memory architecture is critical for power and area efficient design without compromising qua...
Gespeichert in:
Veröffentlicht in: | Journal of electronic testing 2018-08, Vol.34 (4), p.389-404 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The performance of the processor core depends on the configuration parameters and utilization of on-chip memory in multimedia applications such as image, video and audio processing. The design of the on-chip memory architecture is critical for power and area efficient design without compromising quality in data-intensive computing applications. This paper proposes a design of high speed, area, and energy efficient Static Segment On-Chip (SSOC) memory for error-tolerant applications. In this static segment method, n-bit data array is reduced by m-bit data array for significant value of input data to achieve balanced design metrics at the cost of accuracy. The proposed m-bit static segmentation algorithm is implemented and verified in Single Port Static Random Access Memory (SP SRAM) architecture for the approximate computing applications. From the overall simulation results, the proposed 4-bit SSOC SP SRAM design provides 49.02% area savings, 50.62% power reduction and 16.92% speed improvement at the cost of 0.64% Peak Signal to Noise Ratio (PSNR) and exhibits same visual quality in comparison with the existing 8-bit conventional on-chip SP SRAM design in the image processing applications. |
---|---|
ISSN: | 0923-8174 1573-0727 |
DOI: | 10.1007/s10836-018-5742-9 |