Hazard-dependent soil factors for site-specific elastic acceleration response spectra of Italian and European seismic building codes
To define the seismic input in non-liquefiable soils, current seismic standards give the possibility to treat local site effects using a simplified approach. This method is generally based on the introduction of an appropriate number of soil categories with associated soil factors that allow modifyi...
Gespeichert in:
Veröffentlicht in: | Bulletin of earthquake engineering 2018-12, Vol.16 (12), p.5769-5800 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To define the seismic input in non-liquefiable soils, current seismic standards give the possibility to treat local site effects using a simplified approach. This method is generally based on the introduction of an appropriate number of soil categories with associated soil factors that allow modifying the shape of the elastic acceleration response spectrum computed at rocky (i.e. stiff) sites. Although this approach is highly debated among researchers, it is extensively used in practice due to its easiness. As a matter of fact, for standard projects, this method represents the driving approach for the definition of the seismic input. Nevertheless, recent empirical and numerical studies have risen doubts about the reliability and safety of the simplified approach in view of the tendency of the current soil factors of Italian and European building codes to underestimate the acceleration at the free surface of the soil deposit. On the other hand, for certain soil classes, the current soil factors seem to overestimate ground amplification. Furthermore, the occurrence of soil nonlinearity, whose magnitude is linked to both soil type and level of seismic intensity, highlights the fallacy of using constant soil factors for sites with a different seismic hazard. The objective of this article is to propose a methodology for the definition of hazard-dependent soil factors and simultaneously quantify the reliability of the coefficients specified in the current versions of Eurocode 8 (CEN
2005
) and Italian Building Code (NTC8
2008
and revision NTC18
2018
). One of the most important outcome of this study is the quantification of the relevance of soil nonlinearity through the definition of empirical relationships between soil factors and peak ground acceleration at outcropping rock sites with flat topological surface (reference condition). |
---|---|
ISSN: | 1570-761X 1573-1456 |
DOI: | 10.1007/s10518-018-0422-9 |