Coefficients of Gaussian Polynomials Modulo \(N\)
The \(q\)-analogue of the binomial coefficient, known as a \(q\)-binomial coefficient, is typically denoted \(\left[{n \atop k}\right]_q\). These polynomials are important combinatorial objects, often appearing in generating functions related to permutations and in representation theory. Stanley con...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-07 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The \(q\)-analogue of the binomial coefficient, known as a \(q\)-binomial coefficient, is typically denoted \(\left[{n \atop k}\right]_q\). These polynomials are important combinatorial objects, often appearing in generating functions related to permutations and in representation theory. Stanley conjectured that the function \(f_{k,R}(n) = \#\left\{i : [q^{i}] \left[{n \atop k}\right]_q \equiv R \pmod{N}\right\}\) is quasipolynomial for \(N=2\). We generalize, showing that this is in fact true for any integer \(N\in \mathbb{N}\) and determine a quasi-period \(\pi'_N(k)\) derived from the minimal period \(\pi_N(k)\) of partitions with at most \(k\) parts modulo \(N\). |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1801.00188 |