The energy efficiency model under the market response and the evolutionary path under its regulation policy in China

According to the causal relationship among energy efficiency, energy price, and economic growth in China, a network structure of mutual transmission is constructed and a novel model of nonlinear dynamic system is also established. With the help of numerical simulation, the impacts of the parameters...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy efficiency 2019-04, Vol.12 (4), p.895-920
Hauptverfasser: Zhang, Guangyong, Tian, Lixin, Zhang, Wenbin, Yan, Xu, Wan, Bingyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:According to the causal relationship among energy efficiency, energy price, and economic growth in China, a network structure of mutual transmission is constructed and a novel model of nonlinear dynamic system is also established. With the help of numerical simulation, the impacts of the parameters on the motion state of the system and the subsystem are analyzed. Then, the parameters are identified by means of BP neural network, and the model of novel dynamic system is given, which has a practical significance to reflect the actual situation of the system in China. According to the state of the actual evolution, we analyze the regulatory effect of the policy on the state of the system and find that four policies can all make the unstable system become stable. Comparing and analyzing the regulatory effects of the single and combined policy on the system show that the combined policy has a shorter time to reach the stable state and it is more conducive to the reduction of energy price. However, the single policy has a better effect on improving the level of energy efficiency and economic growth. In addition, the evolutionary paths of energy efficiency are analyzed at different regulatory levels under the same policy, and the results show that the higher the regulatory level is and the shorter time it takes to reach steady state for energy efficiency, the lower the level of energy efficiency is.
ISSN:1570-646X
1570-6478
DOI:10.1007/s12053-018-9698-5