Improving the dielectric performance of poly(vinylidene fluoride)/polyaniline nanorod composites by stretch‐induced crystal transition
The introduction of conductive polyaniline (PANI) can significantly improve the dielectric constant of polymer‐based materials. However, there is a drawback of high dielectric loss. Herein, a simple and efficient stretching process was applied to improve the dielectric performance of poly(vinylidene...
Gespeichert in:
Veröffentlicht in: | Polymer international 2018-08, Vol.67 (8), p.1103-1111 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The introduction of conductive polyaniline (PANI) can significantly improve the dielectric constant of polymer‐based materials. However, there is a drawback of high dielectric loss. Herein, a simple and efficient stretching process was applied to improve the dielectric performance of poly(vinylidene fluoride)/PANI (PVDF/PANI) nanorod films through the stretch‐induced crystal transition from non‐polar α‐crystal to polar β‐crystal in PVDF and the oriented distribution of PANI nanorods. XRD, DSC and Fourier transform IR analyses indicate that the stretched PVDF and stretched PVDF/PANI films possess a high content of β‐crystal at the stretching temperature of 135 °C under a stretching ratio of 200%–400%. Furthermore, the stretched PVDF/PANI film with 10 wt% PANI displays a high dielectric constant of 338 at 100 Hz, which is increased by 20% compared to non‐stretched PVDF/PANI film (281). More importantly, the corresponding dielectric loss is reduced from 0.31 for the non‐stretched film to 0.17 for the stretched film. © 2018 Society of Chemical Industry
The orientation of polyaniline (PANI) nanorods and high dielectric performance were obtained in stretched poly(vinylidene fluoride)/PANI film. |
---|---|
ISSN: | 0959-8103 1097-0126 |
DOI: | 10.1002/pi.5617 |