UV-C inactivation of foodborne bacterial and viral pathogens and surrogates on fresh and frozen berries
Outbreaks of foodborne illness associated with berries often involve contamination with hepatitis A virus (HAV) and norovirus but also bacteria such as Escherichia coli O157:H7 and parasites such as Cyclospora caytanensis. We evaluated the applicability of UV-C to the inactivation of pathogens on st...
Gespeichert in:
Veröffentlicht in: | International journal of food microbiology 2018-06, Vol.275, p.8-16 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Outbreaks of foodborne illness associated with berries often involve contamination with hepatitis A virus (HAV) and norovirus but also bacteria such as Escherichia coli O157:H7 and parasites such as Cyclospora caytanensis. We evaluated the applicability of UV-C to the inactivation of pathogens on strawberries, raspberries and blueberries. Our three-step approach consisted of assessing the chemical safety of UV-C-irradiated berries, evaluating the sensory quality after UV-C treatment and finally studying the inactivation of the target microorganisms. Treatments lasting up to 9 min (4000 mJ cm−2) did not produce detectable levels of furan (1 log10 unit in 95% of cases except on frozen raspberries, while 120 s were required to inactivate murine norovirus to this extent on fresh blueberries. The mean inactivation of HAV and MNV was greater on blueberries (2–3 log10) than on strawberries and raspberries (1 log10 unit. In most matrices, prolonging the treatment did not improve the result to any significant degree. The effect was near its plateau after 20 s of treatment. These results provide insight into the effectiveness of UV-C irradiation for inactivating bacterial and viral pathogens and surrogates on fresh and frozen berries having different surface types, under different physical conditions and at different levels of contamination. Overall they show that UV-C as single processing step is unsuitable to inactivate significant numbers of foodborne pathogens on berries.
•UV-C treatments of berries at 4,000 mJ cm−2 did not produce detectable levels of furan and were assessed to be safe.•Short (20 s) and long (9 min) UV-C treatments have no obvious impact on the sensory characteristics of the berries.•Most UV-C treatments were unable to ensure a 1 log10 reduction of pathogens or surrogates on berries. |
---|---|
ISSN: | 0168-1605 1879-3460 |
DOI: | 10.1016/j.ijfoodmicro.2018.03.016 |