On the Role of the N-N ^ Junction Doping Profile of a PIN Diode on Its Turn-Off Transient Behavior

This paper focuses on the role of the N-N junction doping profile model of a PiN diode on its turn-off transient and, particularly, the influence of multiple epitaxies in the N-N profile. A conventional doping profile model has been used in a previous work and an identification procedure for the mai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2008-01, Vol.23 (1), p.491-494
Hauptverfasser: Allard, B., Garrab, H., ben Salah, T., Morel, H., Ammous, K., Besbes, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on the role of the N-N junction doping profile model of a PiN diode on its turn-off transient and, particularly, the influence of multiple epitaxies in the N-N profile. A conventional doping profile model has been used in a previous work and an identification procedure for the main design parameters has been demonstrated. However the validity range of identified PiN-diode models appeared quite limited for hard current and voltage conditions. Readers have asked for the effect of a more advanced doping profile. The turn-off transient of an STTB506D device is considered from experimental and simulation point-of-view inside a fully characterized switching cell. A limitation of the conventional doping profile model is demonstrated and explained physically in order to introduce the necessity of a more complex doping profile. An advanced doping profile is then considered and a comparative study between experimental and simulated turn-off transient behavior of the device is established.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2007.911882